
CSCB09 Week 10 Notes

1. IP Address:
- Every computer on the Internet has an internet address, called its ​IP

(Internet Protocol) address​.
- An IP address is 4 numbers separated by dots.

2. Protocols:
- Computers use several layers of general protocols to communicate.
- A ​network protocol​ is a set of established rules that dictates how to

format, transmit and receive data so computer network devices can
communicate regardless of the differences in their underlying
infrastructures, designs or standards.

- For example, HTTP is a high-level protocol specific to the web.
3. TCP/IP:

- TCP​ stands for ​Transmission Control Protocol​.
- TCP/IP (Transmission Control Protocol/Internet Protocol)​ is a suite of

communication protocols used to interconnect network devices on the
internet. It can also be used as a communications protocol in a private
network, such as an intranet or an extranet.

- TCP/IP specifies how data is exchanged over the internet by providing
end-to-end communications that identify how it should be broken into
packets, addressed, transmitted, routed and received at the destination.

- TCP/IP requires little central management, and it is designed to make
networks reliable, with the ability to recover automatically from the failure
of any device on the network.
I.e. TCP/IP tells the computer how to package up the data.

- The TCP defines how applications can create channels of communication

across a network. It also manages how data is assembled into smaller
packets​ before they are then transmitted over the internet and
reassembled in the right order at the destination address.

- A ​packet​ is the unit of data that is routed between an origin and a
destination on any packet-switched network, including the internet.

- The IP defines how to address and route each packet to make sure it
reaches the right destination. Each gateway computer on the network
checks this IP address to determine where to forward the message.

- E.g. When any file is sent from one place to another on the internet, the
TCP layer divides the file into chunks of an efficient size for routing. Each

CSCB09 Week 10 Notes

of these packets is separately numbered and includes the internet address
of the destination. The individual packets for a given file may travel
different routes through the internet. When they have all arrived, they are
reassembled into the original file by the TCP layer at the receiving end.

- TCP/IP uses the ​client/server model​ ​of communication​.
- In the ​Client-Server model of communication​, a client process wants to

talk to a server process. First, the client must find server by doing a DNS
lookup. Then, the client must find process on server by using ports. Finally
the client must establish a connection so two processes can talk.

- Advantages of TCP/IP include:
- It is non-proprietary and, as a result, is not controlled by any single

company. Therefore, the internet protocol suite can be modified
easily.

- It is compatible with all operating systems, so it can communicate
with any other system.

- The internet protocol suite is also compatible with all types of
computer hardware and networks.

- Sometimes a packet might not arrive, because of traffic overload or bit
corruption. In that case, the receiver asks for missing packets to be resent.
While we want to send data as fast as possible, sending data too fast
wastes resources. We can use ​TCP Congestion Control​ to solve this
problem.

4. TCP Congestion Control:
- Network congestion may occur when a sender overflows the network with

too many packets. At the time of congestion, the network cannot handle
this traffic properly.

- What the TCP Congestion Control does is that it creates a window that
allows some sent packets to be ack’d. As more packets are ​ack’d​, it
increases the capacity of the window. If a packet loss is discovered, it
decreases the capacity of the window.

- Ack​ ​is the name of a signal that data has been received successfully.
5. Introduction to Sockets:

- Sockets allow communication between two different processes on the
same or different machines using standard Unix file descriptors.

- Similar to pipes, except sockets can be used between processes on
different machines.

- Sockets are built on top of the TCP layer.
- A Unix Socket is used in a client-server application framework.
- A ​server​ is a process that performs some functions on request from a

client.
6. Types of Sockets:

- There are two main categories of sockets:
1. UNIX domain:​ Both processes are on the same machine.
2. INET domain:​ The processes are on different machines.

CSCB09 Week 10 Notes

- There are three main types of sockets:
1. SOCK_STREAM (​Stream Sockets):​ Delivery in a networked

environment is guaranteed. If you send through the stream socket
three items "A, B, C", they will arrive in the same order, "A, B, C".
These sockets use TCP for data transmission. If delivery is
impossible, the sender receives an error indicator. Data records do
not have any boundaries.

2. SOCK_DGRAM (​Datagram Sockets):​ Delivery in a networked
environment is not guaranteed. They use UDP (User Datagram
Protocol) and are connectionless because they don't need to have
an open connection. Instead, you build a packet with the
destination information and send it out.

3. SOCK_RAW (Raw Sockets):​ These provide users access to the
underlying communication protocols, which support socket
abstractions. These sockets are normally datagram oriented,
though their exact characteristics are dependent on the interface
provided by the protocol. Raw sockets are not intended for the
general user; they have been provided mainly for those interested
in developing new communication protocols, or for gaining access
to some of the more cryptic facilities of an existing protocol.

7. Addresses and Ports:
- A ​socket pair​ is the two endpoints of the connection.
- An endpoint is identified by an IP address and a port.
- IPv4 (IP version 4) addresses are four 8-bit numbers.
- A ​port​ is an endpoint for communication.
- Ports are identified on a server for each protocol and address, known as

the ​port number​.
- We use ports because multiple processes can communicate with a single

machine, so we need another identifier.
- The port assignments to network services can be found using the

command ​cat /etc/services​.
- Well-known ports are from 0 - 1023.
- E.g.:

- 80 = http
- 22 = ssh
- 23 = telnet

- Registered ports are from 1024 - 49151.
- E.g.:

- 2709 = supermon
- 26000 = quake
- 3724 = world of warcraft

- Dynamic (private) ports are from 49152 - 65535.

CSCB09 Week 10 Notes

8. Server Side:
- Need to use ​#include <sys/socket.h>
- Steps:

1. Create a socket: socket().
2. Assign a name to a socket: bind().
3. Establish a queue for connections: listen().
4. Get a connection from the queue: accept().

- Syntax for socket():
- This creates a socket. It returns a socket descriptor, an integer (like

a file-handle). If the return number is -1, then there was an error.
- int socket(family, type, protocol)
- family:​ Specifies protocol family:

- PF_INET: IPv4
- PF_LOCAL: Unix domain

- type:​ The communication type.
- SOCK_STREAM
- SOCK_DGRAM
- SOCK_RAW

- protocol: ​Set to 0 except for RAW sockets.
- Syntax for bind():

- The bind function assigns a local protocol address to a socket. This
function is called by TCP server only. This returns 0 if it
successfully binds to the address, otherwise it returns -1 on error.

- int bind(int sockfd, const struct sockaddr *servaddr, socklen_t
addrlen);

- Sockfd:​ The number returned by socket().
- struct sockaddr_in {

 short int sin_family;
 unsigned short int sin_port;
 struct in_addr sin_addr;
 unsigned char sin_zero[8];
};

Attribute Values Description

sin_family PF_INET Represents the protocol family.

sin_port Service Port A 16-bit port number in Network Byte Order.

sin_addr IP Address A 32-bit IP address in Network Byte Order.
Note:​ sin_addr can be set to ​INADDR_ANY
to communicate on any network interface.

sin_zero[8] Filling You just set this value to NULL as this is not
being used.

CSCB09 Week 10 Notes

- Servaddr:​ A pointer to struct sockaddr that contains the local IP
address and port.

- Addrlen​ should be set to sizeof(struct sockaddr).
- Syntax for listen():

- After calling listen, a socket is ready to accept connections.
- It prepares a queue in the kernel where partially completed

connections wait to be accepted.
- int listen(int sockfd, int backlog​)
- Sockfd:​ The number returned by socket().
- Backlog:​ The maximum number of partially completed connections

that the kernel should queue.
- Syntax for accept():

- It blocks, waiting for a connection from the queue, creates a new
connected socket, and returns a new descriptor, which refers to the
TCP connection with the client.

- At this point, connection is established between client and server,
and they are ready to transfer data.

- Reads and writes on the connection will use the socket returned by
accept.

- int accept(int sockfd, struct sockaddr *cliaddr, socklen_t
*addrlen);

- Sockfd: ​Is the listening socket.
- Cliaddr:​ ​A pointer to struct sockaddr that contains client IP address

and port.
- Addrlen​ should be set to sizeof(struct sockaddr).

9. Client Side:
- Need to use ​#include <sys/socket.h>
- Steps:

1. Create a socket: socket(). This is the same as the server side.
2. Initiate a connection: connect().

- Syntax for connect():
- The connect() system call connects the socket referred to by the file

descriptor sockfd to the address specified by servaddr. The server’s
address and port is specified in servaddr.

- The kernel will choose a dynamic port and source IP address.
- Returns 0 on success and -1 on failure setting errno.

CSCB09 Week 10 Notes

- Initiates the three-way handshake (The picture below).

- int connect(int sockfd, const struct sockaddr *servaddr,

socklen_t addrlen);
- Sockfd:​ The number returned by socket().
- Servaddr: A pointer to struct sockaddr that contains destination IP

address and port.
- Addrlen​ should be set it to sizeof(struct sockaddr).

CSCB09 Week 10 Notes

10.Byte order:
- Unfortunately, not all computers store the bytes that comprise a multibyte

value in the same order. Consider a 16-bit internet that is made up of 2
bytes. There are two ways to store this value:
1. Little Endian:​ In this scheme, a low-order byte is stored on the

starting address (A) and a high-order byte is stored on the next
address (A + 1).
I.e. Little Endian byte ordering places the least significant byte first.

2. Big Endian:​ In this scheme, a high-order byte is stored on the
starting address (A) and a low-order byte is stored on the next
address (A + 1).
I.e. Big Endian byte ordering places the most significant byte first.

- Intel is little-endian, and Sparc is big-endian.
- To allow machines with different byte order conventions communicate with

each other, we convert numbers to ​network byte order​ (big-endian)
before we send them.

- There are functions provided to do this:
Function Description

unsigned long htonl(unsigned long) This function converts 32-bit quantities from
host byte order to network byte order.

unsigned short htons(unsigned short) This function converts 16-bit quantities from
host byte order to network byte order.

unsigned long ntohl(unsigned long) This function converts 32-bit quantities from
network byte order to host byte order.

unsigned short ntohs(unsigned short) This function converts 16-bit quantities from
network byte order to host byte order.

CSCB09 Week 10 Notes

11.Sending and Receiving Data:
- Read and write calls work on sockets, but sometimes we want more

control.
- We can use the send function and the receive function instead.
- Send():

- The send function is used to send data over stream sockets or
connected datagram sockets.

- Syntax: ​ssize_t send(int fd, const void *buf, size_t len, int
flags);

- This call returns the number of bytes sent out, otherwise it will
return -1 on error.

- fd​ is the ​socket descriptor returned by the socket function.
- buf​ is a pointer to the data you want to send.
- len​ is the length of the data you want to send (in bytes).
- flags:

- If flags==0, then send() works like write.
- If flags is MSG_OOB, then it ​sends out-of-band data on

sockets that support out-of-band communications. The
significance and semantics of out-of-band data are
protocol-specific.

- If flags is MSG_DONTROUTE, then it doesn't include routing
information in the message.

- If flags is MSG_DONTWAIT, then it ​enables a non-blocking
operation.

- Recv():
- The recv function is used to receive data over stream sockets or

connected datagram sockets.
- Syntax: ​ssize_t recv(int fd, void *buf, size_t len, int flags);
- This call returns the number of bytes read into the buffer, otherwise

it will return -1 on error.
- fd ​is the ​socket descriptor returned by the socket function.
- buf​ is the buffer to read the information into.
- len​ is the maximum length of the buffer.
- flags:

- If flags==0, then recv() works like read.
- If flags is MSG_OOB, then it ​requests out-of-band data. The

significance and semantics of out-of-band data are
protocol-specific.

- If flags is MSG_WAITALL, then it ​requests that the function
block until the full amount of data can be returned.

- If flags is MSG_PEEK, then it ​peeks at an incoming
message. The data is treated as unread and the next ​recv​()
or similar function shall still return this data.

CSCB09 Week 10 Notes

12.Close:
- The close function is used to close the communication between the client

and the server. When finished using a socket, the socket should be
closed.

- Syntax: ​int close(int socketfd)
- Socketfd is the file descriptor of the socket being closed.
- This returns 0 on success, otherwise it returns -1 on error.
- Closing a socket:

- Closes a connection for SOCK_STREAM.
- Frees up the port used by the socket.

13.PF Vs AF:
- PF stands for ​Protocol Family​. It refers to anything in the protocol,

usually sockets and ports.
- AF stands for ​Address Family​. It refers to addresses from the internet, IP

addresses specifically.

